Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.09.23.309948

RESUMO

Two cats from different COVID-19-infected households in the UK were found to be infected with SARS-CoV-2 from humans, demonstrated by immunofluorescence, in situ hybridisation, reverse transcriptase quantitative PCR and viral genome sequencing. Lung tissue collected post-mortem from cat 1 displayed pathological and histological findings consistent with viral pneumonia and tested positive for SARS-CoV-2 antigens and RNA. SARS-CoV-2 RNA was detected in an oropharyngeal swab collected from cat 2 that presented with rhinitis and conjunctivitis. High throughput sequencing of the virus from cat 2 revealed that the feline viral genome contained five single nucleotide polymorphisms (SNPs) compared to the nearest UK human SARS-CoV-2 sequence, and this human virus contained eight SNPs compared to the original Wuhan-Hu-1 reference. An analysis of the viral genome of cat 2 together with nine other feline-derived SARS-CoV-2 sequences from around the world revealed no shared cat-specific mutations. These findings indicate that human-to-cat transmission of SARS-CoV-2 occurred during the COVID-19 pandemic in the UK, with the infected cats developing mild or severe respiratory disease. Given the versatility of the new coronavirus, it will be important to monitor for human-to-cat, cat-to-cat and cat-to-human transmission.


Assuntos
COVID-19 , Pneumonia Viral , Doenças Respiratórias , Rinite
2.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.09.23.309849

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). While the development of specific treatments and a vaccine is urgently needed, functional analyses of SARS-CoV-2 have been limited by the lack of convenient mutagenesis methods. In this study, we established a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. Notably, the construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (~5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. We hope that our reverse genetics system will contribute to the further understanding of SARS-CoV-2.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA